由(4c)和(4d)可知应随距离的变化正比 ゆま 係 圖 $◆ 2相因于。<math>k_1 = \frac{n_1 \omega}{\alpha}$, $k_2 = \frac{2n_2 \omega}{\alpha}$ 于B(20, 2),所以在边界端の前变化是可忽 限4第一卷61第三位量,加加显示员介质的本征折 略的、同样的消弭、0% 在边界端的变化是和讯 射率。由于这两束彼以满足位相匹配的方式 入射, 所以, 特殊三波混频导致的介质 分别为0520 折射率的感应变化。 盾 刘颂豪 $P^{(2)}(\omega, z, t)$ (中国科学院安徽光机所) -) (1) (1) (中国科学院上海光机所) (100-kg: (p2-q0)]) 证明了在特殊的三波混频条件下光频普 提要. 本文从非线性耦合波理论出发, Induced refractive index change resulted 式中 7 (2) from special three-wave mixing 张量,60 为真空中的 Liu Dun, He Guangsheng (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica) Liu Songhao

(Anhui Institute of Optics and Fine Mechanics, Academia Sinica)

另一方面,将(50)_(5d)代入到光 Abstract: Based on nonlinear coupled-wave theory, the existence of optical Pockels effect on the condition of special three-wave mixing is shown theoritically. The physical conditions for this effect are also derived.

31

我们在研究三波混频过程中振幅与相位 动态变化特性时,发现在一定的条件下, 次非线性介质的折射率可发生与作用光场振 幅成正比的感应变化,我们将这种效应定义 为光频普克尔斯效应。以与普通普克尔斯效 应相对应。本文从基本的非线性耦合波方程 出发,推导出预言这种效应存在的理论结果。

耦合波理论的描述

设有频率分别为ω与 2ω 的单色平面光

波场,同时沿2轴方向共线入射到二次非线 性介质(压电晶体)中。为讨论方便而又不失 其普遍意义再假设两入射光场均为线偏振 光,且以一定方式(第I类或第II类)满足相 位匹配条件。此情况下两入射光场可表示为 如下形式:

 $\boldsymbol{E}(\omega, z, t) = \operatorname{Re}\{\boldsymbol{a} A(\omega, z) e^{i(\omega t - k_1 z + \varphi_1(z))}\}$ $\Xi(\mathbf{a})$ $\Xi(\mathbf{a}) = a \cdot \mathcal{J}^{(2)}(\pm cost 2co, t \pm co) : co = b \cdot \mathcal{J}$ $\boldsymbol{E}((2\omega, z, t) = \operatorname{Re}\{\boldsymbol{b}B(2\omega, z)e^{i(\omega t - k_2 z + \phi_2(z))}\}.$ (1b)

式中a、b分别是入射光场偏振方向上的 单位矢量, $A(\omega, z)$ 、 $B(2\omega, z)$ 是其实振幅,

○收稿日期: 1984年8月24日。 ○○ · · ×

 $\varphi_1(z), \varphi_2(z)$ 是位相因子。 $k_1 = \frac{n_1 \omega}{c}, k_2 = \frac{2n_2 \omega}{c}$ 是两波场的波矢模量, n_1, n_2 是介质的本征折射率。由于这两束波以满足位相匹配的方式入射,所以 $n_1 = n_2 = n_0, k_2 = 2k_1$ 。

通过三波混频效应可在介质内引起频率 分别为ω与2ω的非线性感应电极化强度, 导致折射率的变化。介质内感应二阶非线性 电极化强度分别为:

 $P^{(2)}(\omega, z, t)$

$$=\epsilon_{0}\operatorname{Re}\{\overline{\chi}^{(2)}(-\omega, 2\omega, -\omega): abA(\omega, z) \\ \times B(2\omega, z)e^{i(\omega t - k_{1} z + (\varphi_{1} - \varphi_{1})]}\}$$
(2a)
$$P^{(2)}(2\omega, z, t)$$

 $=\frac{1}{2} \epsilon_0 \operatorname{Re} \{ \, \tilde{\chi}^{(2)} \, (-2\omega; \, \omega, \, \omega) : \boldsymbol{aa} A^2(\omega, \, z) \}$

× e^{i[2ωt-2k₁z+2φ₁]} (2b) 式中 7⁽³⁾ 为介质的二阶非线性电极化系数

张量, co 为真空中的介电常数(我们采用国际 单位制)。将(1)、(2)两式代入到波动方程

$$\nabla^2 \boldsymbol{E} - \frac{n^2}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = \mu_0 \frac{\partial^2 \boldsymbol{P}^{(2)}}{\partial t^2} \qquad (3)$$

在慢振幅变化近似,即 $k_1 \frac{\partial A}{\partial z} \gg \frac{\partial^2 A}{\partial z^2}, k_1 \frac{\partial \varphi_1}{\partial z}$ $\gg \frac{\partial^2 \varphi_1}{\partial z^2}$ 等等,以及稳态条件下得到了下面 方程^[1];

$$\partial A/\partial z = -\frac{K^{(2)}\omega^2}{2k_1c^2}$$

$$= \frac{K^{(2)}\omega^2}{K^{(2)}\omega^2} + \frac{K^{(2)}\omega^2}{4k} + \frac{K^{(2)}\omega^2}$$

$$\frac{\partial L}{\partial z} = \frac{1}{2k_1 e^2} A^2(\omega, z) \sin \theta \qquad (40)$$

$$\partial \phi_1 / \partial z = -\frac{1}{2k_1 c^2} B(2\omega, z) \cos \theta \quad (4c)$$
$$\partial \phi_2 / \partial z = -\frac{K^{(2)} \omega^2}{2k_1 c^2}$$

× $A^2(\omega, z)/B(2\omega, z)\cos\theta$ (4d) 式中 $K^{(2)} = \boldsymbol{a} \cdot \tilde{\boldsymbol{\chi}}^{(2)}(-\omega; 2\omega, -\omega):\boldsymbol{ab} = \boldsymbol{b} \cdot$ $\tilde{\boldsymbol{\chi}}^{(2)}(-2\omega; \omega, \omega):\boldsymbol{aa}; \ \theta = \varphi_2 - 2\varphi_1, \ 它满足$ 的方程是:

 $\frac{\partial \theta}{\partial z} = + \frac{K^{(2)} \omega^2}{2k_1 c^2} \times [2B(2\omega, z) - A^2(\omega, z) / \\ \times B(2\omega, z)] \cos \theta \qquad (4e)$

由(4c)和(4d)可知 φ_1 随距离的变化正比 于 $B(2\omega, z)$,所以在边界端 φ_1 的变化是可忽 略的。同样的道理, φ_2 在边界端的变化是很迅 速的,将很快便达到 $\theta = \frac{\pi}{2}$ 。可以证明,在以 后的传播过程中 $\theta = \frac{\pi}{2}$ 。这样方程组(4)就 退化为两个方程(4a)和(4b),它是通常讨论 倍频过程的方程。方程组(4)还可描述另外 一种特殊过程,就是本文所要着重讨论的频 率 ω 与2 ω 的两波输入的过程。从方程组 (4)中可以看到,若在整个三波混频过程中 θ 满足 $\theta(z) = 0$ [后面我们将给出它成立的条 件],则方程组(4)的解为.

$$A(\omega, z) \equiv A(\omega, 0)$$
 (5a)

$$B(2\omega, z) \equiv B(2\omega, 0)$$
 (5b)

$$\phi_1(z) = \phi_1(0) - \frac{K^{(2)}\omega^2}{2k_1c^2} B(2\omega, 0)z$$
 (5c)

$$\phi_{2}(z) = \phi_{2}(0) - \frac{K^{(2)}\omega^{2}}{2k_{1}c^{2}} A^{2}(\omega, 0) / B(2\omega, 0)z$$
(5d)

(5a)、(5b)两式说明此时停止了能量转换过 程,两波的振幅一直保持为入射时的振幅。 另一方面,将(5c)、(5d)代入到光场的表达式 (1)式中,我们从其 e 指数因子上看到有这样 一个因子出现:

$$\begin{aligned} -k_{1}z + \varphi_{1}(z) \\ &= -\left(n_{0}\frac{\omega}{c} + \frac{K^{(2)}\omega^{2}}{2k_{1}c^{2}}B(2\omega, 0)\right)z + \varphi_{1}(0) \\ &= -\left(n_{0} + \frac{K^{(3)}}{2n_{0}}B(2\omega, 0)\right)\frac{\omega}{c}z + \varphi_{1}(0) \end{aligned}$$

$$\begin{aligned} &= -\left(n_{0} + \frac{K^{(2)}\omega^{2}}{c} + \frac{K^{(2)}\omega^{2}}{2k_{1}c^{2}} \\ &\times A^{2}(\omega, 0)/B(2\omega, 0)\right)z + \varphi_{2}(0) \\ &= -\left(n_{0} + \frac{K^{(2)}}{4n_{0}}A^{2}(\omega, 0)/B(2\omega, 0)\right)\frac{2\omega}{c}z \\ &+ \varphi_{2}(\omega) \end{aligned}$$
(6b)

(6a)、(6b)等式右边括号内的项应为介质总的折射率:

· 204 ·

 $n'_{1}(\omega) = n_{0} + \frac{1}{2n_{0}} K^{(2)}B(2\omega, 0)$ (7a) $n'_{2}(2\omega) = n_{0} + \frac{1}{4n_{0}} K^{(2)}A^{2}(\omega, 0)/B(2\omega, 0)$ (7b) 可以证明 $n'_{1} = n'_{2}$,所以在整个过程中位相匹 配得到满足,亦即过程的发生始终是有效的。 由数学上可知,若能保证边界上 $\theta(0) = 0$ 和 介质的任一截面上 θ 对距离 z 的 微 分 满 足 $\frac{\partial \theta(z)}{\partial z} = 0$,就可保证在任一截面上 $\theta(z) = 0$ 。 第一个要求提出了对两束光在边界上的位相 要求:

 $\theta(0) = 2\varphi_1(0) - \varphi_2(0) = 0$ (8) 而由(4e)式知,在满足(8)式的前提下满足 $\frac{\partial \theta}{\partial z} = 0$ 的条件是:

 $A^{2}(\omega, 0) = 2B^{2}(2\omega, 0)$ (9)

即在入射端要求基波的光强是谐波光强的两倍,将(9)式代入到(7)式,将(7)式的结果重写如下:

 $n_1'(\omega) = n_0 + \frac{1}{2n_0} K^{(2)}B(2\omega, 0) = n_2'(2\omega)$ (10)

由(10)式我们看到,介质的折射率除了常数 no项之外,还增加了一项,这项正比于介质的 有效二阶非线性电极化系数 K⁽²⁾,且受到光 场的振幅线性调制,就象普克尔斯效应中折 射率受到所加直流电场的线性调制。

知道方程组(4)所描述的是一种特殊的 三波混频过程,即振幅分别为A(ω)、A(ω)和 B(2ω)的三波混频过程。(9)式意味着这三个 波具有相同的光强。所以三个波的光强相等 是能量转换停止的一个必要条件,但不是充 分条件。可以证明在(9)式满足而(8)式不满 足时,仍存在能量转换过程。方程(8)及θ(z) =0 是保证由(2)式给出的非线性电极化强 度与所对应的相同频率的场在非线性介质中 的任一截面都具有相同的位相。

文献[1]指出,在任意边界条件下,场振幅与作用距离以椭圆积分的形式连接起来:

 $\zeta = \frac{1}{2} \int_{v_a^2}^{v^2(\ell)} \frac{d(v^2)}{[v^2(1-v^2)^2 - \Gamma^2]^{1/2}}$ (11) 式中几个变量是经过以下变换而来:

$$\zeta = \mu_0 \epsilon_0 \omega^2 K^{(2)} / 2 \cdot \left(\frac{2\omega W}{\epsilon_0 c^2 k_1}\right)^{1/2} z \quad (12a)$$

$$w = \left(\epsilon_0 z^2 k_1 / 2 \omega W\right)^{1/2} R^{(2c)} z^{-1} (12b)$$

 $u = (\epsilon_0 c^2 k_1 / 2\omega W)^{1/2} A(\omega, z)$ (12c)

其中 $W = \frac{1}{2} \epsilon_0 c [A^2(\omega, z) + B^2(2\omega, z)]$ 为总 光强, u、v 是归一化的光场振幅, 满足

$$v^2 + v^2 = 1$$
 (13)

(11)式中的 Γ 由边界条件给出, 它也是一个 守恒量, 定义为:

 $\Gamma^2 = u^4(\omega, 0)v^2(2\omega, 0)\cos^2\theta(0)$

 $=u^4(\omega, \zeta)v^2(2\omega, \zeta)\cos^2\theta(\zeta)$ (14) 由(11)式给出的椭圆积分的周期为:

$$\pi_s = \int_{v_a^*}^{v_b^*} \frac{d(v^2)}{[v^2(1-v^2)^2 - \Gamma^2]^{1/2}} \quad (15)$$

其中 vo、 vo 是方程

 $v^{2}(1-v^{2})^{2}-\Gamma^{2}=0$ (16) 的解; v_{a} 是一个周期内的最小值, v_{b} 是最大 值。

场位相随作用距离的变化在求得了 u、 v 后可由(14)式求出。因 u、 v 具有周期性, 所 以 θ(ζ) 也是周期变化的。图 1 给出了倍频 场光强函数 v³(ζ) 和位相因子函数 | cos θ(ζ) | 在一个周期内变化的理论曲线。

图 1 Γ²=1/27 时一个周期内的相对位相函数 |cosθ(ζ)|及倍频光强函数 v²(ζ)的变化曲线

(11)、(14)、(15)、(16)式告诉我们,倍频效率、场位相的变化、振荡周期以及一个周期内的最大、最小值都受边界条件 Γ 的影响,改变 Γ 值,可以改变经倍频晶体后的各个物

. 205 .

理量的量值。前面讨论的两个特殊情况分别 对应于 $\Gamma = 0$ (倍频)和 $\Gamma = (4/27)^{1/3}$ (折射 率感应变化)。将这两个特殊值代入到以上 公式中也得到了前面讨论的结果。

三、实验研究

= (enc2k/2k0W) \$14 [2 (2 a) z } (2 2 b)]

实验光路如图 2 所示。YAG 振荡器 和 一级 放大输出的1.06 μ m 激光经第一块 KDP 晶体就提供了两束频率的激光,它们以 位相匹配方式同时共线入射到第二块 KDP 晶体。由此可以测得初始位相 $\theta(0)$ 和倍频 光强的关系。结果见图 3,实线是实验结果, 虚线是理论计算结果。理论计算是依据公式 (11), ζ 为一定值,通过改变位相 $\theta(0)$ 改变 积分上限 v^{3} 值。理论与实验结果的基本一 致清楚地表明了初始位相的影响的存在。当

 $I_{s} = I_{s0} \exp\left[\int_{0}^{L} gI_{p} dz\right]$ $= I_{s0} \exp\left[gI_{p0}Le^{-2\left(\frac{r}{r_{p}}\right)^{2}}\right]_{p}$

设半功率点处光束半径为 r_s ,它正比于光束发散角 θ_s ,则

$$\theta_s/\theta_p = r_s/r_p = \sqrt{\ln\left[1 - \frac{\ln 2}{G_0}\right]^{-1/2}}$$

式中 $G_0 = gI_{p0}L$, 为峰值喇 曼 增 益 因 子。 $g_s/\theta_p \sim G_0$ 曲线示于图 6。通常实验 的 G_0 在 25~30 之间,则 $\theta_s/\theta_p \sim 0.1$ 。此理论估计的 趋势与本实验结果相符。由于我们采用的泵 浦光束是多模结构,上述高斯基模光束的估 不满足位相匹配时,实验上未观察到初位相 的影响。

作为移相器的尖劈板是玻璃制作的两块 梯形板,其中一块固定,另一块可以平移,利用 玻璃的色散改变两频率激光的相对光程,达 到改变两频率激光的相对位相。由第一块 KDP晶体输出的1.06μm激光能量约10 mJ, 0.53μm激光能量为0.35 mJ,脉宽约10 ns。 第二块 KDP晶体长 5 cm。

文

献

算仅能给出方向性改善的趋势。

 $= n_{c}(2\omega) = n_{c}(2\omega)$

另外,实验中还发现有非喇曼频移输出 光如波长为442nm的辐射。此辐射不能用 混频过程解释,产生机制尚在研究之中。

本工作受到了王之江教授的关心和指导,实验筹备阶段,唐士清、陈伟同志曾给予 帮助,在此表示感谢。

参考文献

 S. F. Fulghum et al.; IEEE J. Quant. Electr. 1984, 20, No. 3, 218.

[2] A. Qwyoung; Opt. Lett., 1978, 2, No. 4, 91.

· 206 ·